
Magnetic Fields

- Certain iron containing materials have been known to attract or repel each other.
- Compasses align to the magnetic field of earth.
- Analogous to positive and negative charges, every magnet has a north and a south pole (but always as a pair).
- Magnetic fields can be created by electrical currents.

Magnetic Field and Magnetic Force

$$\left| ec{\mathbf{F}}_{\!\scriptscriptstyle B}
ight| \propto q, \left| ec{\mathbf{v}}
ight|$$

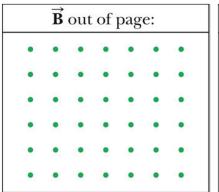
$$\vec{\mathbf{v}} / / \vec{\mathbf{B}} \Rightarrow \vec{\mathbf{F}}_B = 0$$

$$\theta \neq 0 \Rightarrow \vec{\mathbf{F}}_{\scriptscriptstyle R} \perp \vec{\mathbf{B}}, \vec{\mathbf{v}}$$

$$\vec{\mathbf{F}}_{B}(q < 0, \vec{\mathbf{v}})$$
 opposite $\vec{\mathbf{F}}_{B}(q > 0, \vec{\mathbf{v}})$

$$\left| \vec{\mathbf{F}}_{B} \right| \propto \sin \theta$$

Magnetic Force


$$\vec{\mathbf{F}}_{B} = q\vec{\mathbf{v}} \times \vec{\mathbf{B}}$$

$$F_B = |q| vB \sin \theta$$

Magnetic Field, B: Tesla (T)=N/(C.m/s)=N/(A.m)

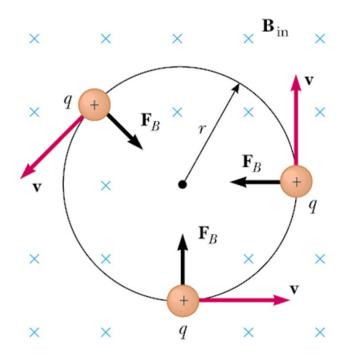
Right Hand Rule \overrightarrow{F}_B \overrightarrow{F}_B

Magnetic Field Representation

~		X	to p			~
X	X	X	X	X	X	X
X	×	X	×	×	X	X
×	\times	×	\times	\times	\times	X
×	\times	×	×	×	×	×
×	×	×	×	\times	×	×
X	X	X	X	X	X	X

Electric and Magnetic Forces

$$\vec{\mathbf{F}}_B = q\vec{\mathbf{v}} \times \vec{\mathbf{B}} \qquad \vec{\mathbf{F}}_E = q\vec{\mathbf{E}}$$


- Electric forces act in the direction of the electric field, magnetic forces are perpendicular to the magnetic field.
- A magnetic force exists only for charges in motion.
- The magnetic force of a steady magnetic field does no work when displacing a charged particle.
- The magnetic field can alter the direction of a moving charged particle but not its speed or its kinetic energy.

Motion of Charged Particles in a Uniform Magnetic Field

Consider a positive charge moving perpendicular to a magnetic field with an initial velocity, **v**.

The force F_B is always at right angles to v and its magnitude is,

$$F_{\scriptscriptstyle B} = q v B$$

So, as q moves, it will rotate about a circle and F_B and v will always be perpendicular. The magnitude of v will always be the same, only its direction will change.

Cyclotron Frequency

To find the radius and frequency of the rotation:

The radial force $\sum F = ma_r$

$$\sum F = ma_r$$

$$F_B = qvB = m\frac{v^2}{r}$$

$$r = \frac{mv}{qB}$$

The angular speed
$$\omega = \frac{v}{r} = \frac{qB}{m}$$
 — Cyclotron frequency

The period

$$T = \frac{2\pi r}{v} = \frac{2\pi}{\omega} = \frac{2\pi m}{qB}$$

Example 29.3

Electron beam in a magnetic field

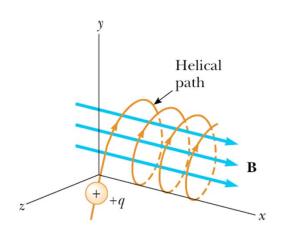
$$\Delta V = 350 \text{ V}$$

 $r = 7.5 \text{ cm}$
 $q = e = 1.6 \times 10^{-19} \text{ C}$
 $m = m_e = 9.11 \times 10^{-31} \text{ kg}$

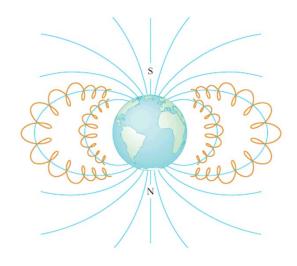
$$B = ?$$

 $\omega = ?$

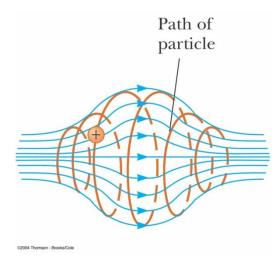
$$\Delta K = U$$


$$\frac{1}{2}m_e v^2 = e\Delta V$$

$$v = \sqrt{\frac{2e\Delta V}{m_e}} = 1.11 \times 10^7 \, m/s$$

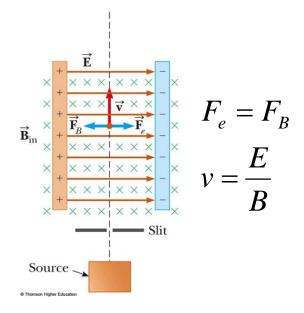

$$r = \frac{mv}{qB} \longrightarrow B = \frac{m_e v}{er} = 8.4 \times 10^{-4} T$$

$$\omega = \frac{qB}{m} = \frac{eB}{m_e} = 1.5 \times 10^8 \, rad \, / \, s$$

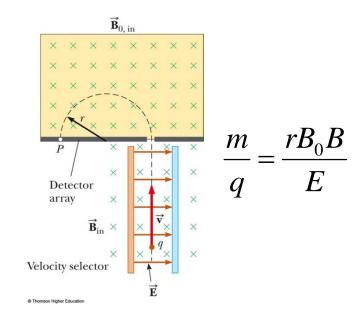

Guiding Charged Particles

Helical Motion – v_x , v_y and v_z

Cosmic Rays in the Van Allen Belt

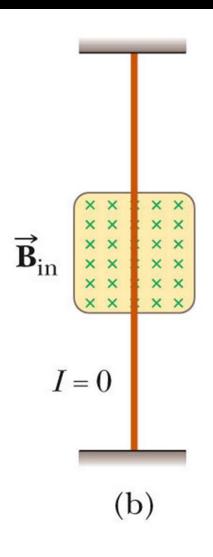

Complex Fields – Magnetic Bottles

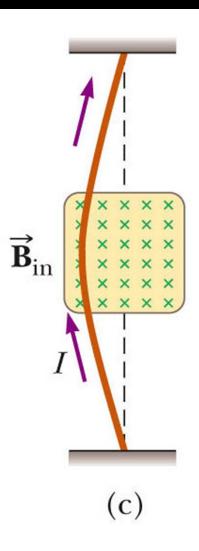
Lorenz Force and Applications

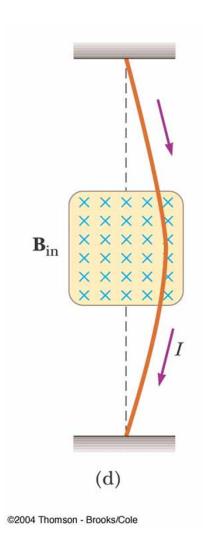

Essentially it is the total electric and magnetic force acting upon a charge.

$$\vec{\mathbf{F}} = q\vec{\mathbf{E}} + q\vec{\mathbf{v}} \times \vec{\mathbf{B}}$$

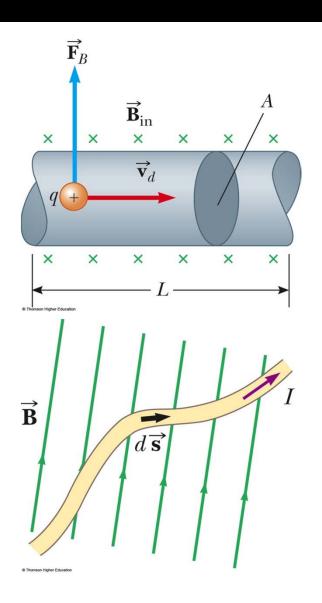
Velocity Selector


Mass Spectrometer




Magnetic Force on a Current Carrying Conductor

- Magnetic force acts upon charges moving in a conductor.
- The total force on the current is the integral sum of the force on each charge in the current.
- In turn, the charges transfer the force on to the wire when they collide with the atoms of the wire.


Magnetic Force on a Current Carrying Conductor

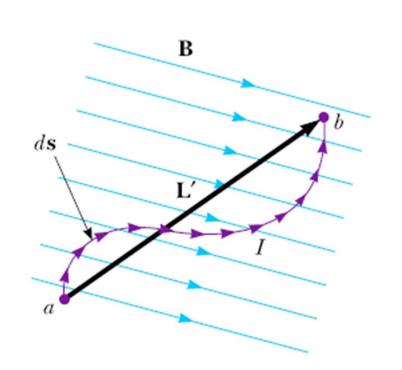
Magnetic Force on a Current Carrying Conductor

$$\vec{\mathbf{F}}_{B,q} = \left(q\vec{\mathbf{v}}_d \times \vec{\mathbf{B}} \right)$$

$$\vec{\mathbf{F}}_{B} = \left(q\vec{\mathbf{v}}_{d} \times \vec{\mathbf{B}}\right) nAL$$

$$I = v_d q n A$$

$$\vec{\mathbf{F}}_B = I\vec{\mathbf{L}} \times \vec{\mathbf{B}}$$

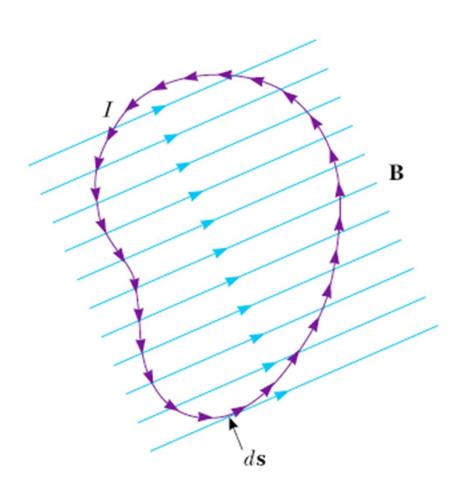

For a straight wire in a uniform field

$$d\vec{\mathbf{F}}_{R} = Id\vec{\mathbf{s}} \times \vec{\mathbf{B}}$$

$$\vec{\mathbf{F}}_B = I \int_a^b d\vec{\mathbf{s}} \times \vec{\mathbf{B}}$$

For an arbitrary wire in an arbitrary field

A Special Case – arbitrary wire in a uniform field

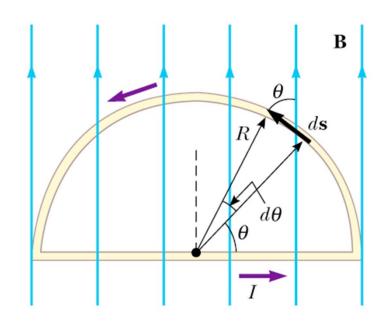

$$\vec{\mathbf{F}}_B = I \int_a^b d\vec{\mathbf{s}} \times \vec{\mathbf{B}}$$

$$\vec{\mathbf{F}}_B = I \left(\int_a^b d\vec{\mathbf{s}} \right) \times \vec{\mathbf{B}}$$

$$\vec{\mathbf{F}}_{B} = I\vec{\mathbf{L}}' \times \vec{\mathbf{B}}$$

The net magnetic force acting on a curved wire in a uniform magnetic field is the same as that of a straight wire between the same end points.

Closed Loop in a Magnetic Field


$$\vec{\mathbf{F}}_B = I(\oint d\vec{\mathbf{s}}) \times \vec{\mathbf{B}}$$

$$\oint d\vec{\mathbf{s}} = 0$$

$$\vec{\mathbf{F}}_{B} = 0$$

Net magnetic force acting on any closed current loop in a uniform magnetic field is zero.

Forces on a Semicircular Conductor

On the straight wire

$$F_1 = ILB = 2IRB$$

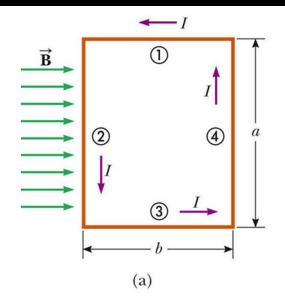
Directed out of the board

On the curved wire

$$dF_2 = I \left| d\vec{\mathbf{s}} \times \vec{\mathbf{B}} \right| = IB \sin \theta ds$$

$$s = R\theta$$

$$ds = Rd\theta$$

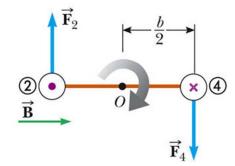

$$dF_2 = IRB \sin \theta d\theta$$

$$F_2 = \int_0^{\pi} IRB \sin \theta d\theta = IRB \int_0^{\pi} \sin \theta d\theta$$

$$F_2 = 2IRB$$
 Directed in to the board

$$\vec{\mathbf{F}} = \vec{\mathbf{F}}_1 + \vec{\mathbf{F}}_2 = 0$$

Torque on a Current Loop in a Uniform Magnetic Field


If the field is parallel to the plane of the loop

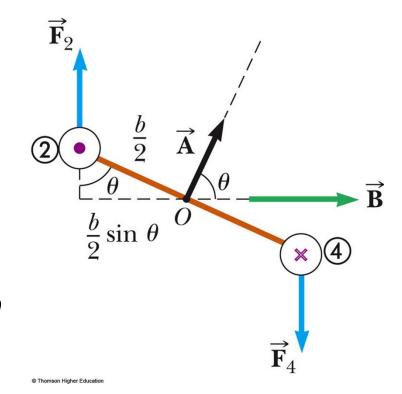
For 1 and 3,
$$\vec{\mathbf{L}} \times \vec{\mathbf{B}} = 0$$

For 2 and 4, $F_2 = F_4 = IaB$

$$\tau_{\text{max}} = F_2 \frac{b}{2} + F_4 \frac{b}{2} = (IaB) \frac{b}{2} + (IaB) \frac{b}{2}$$
$$\tau_{\text{max}} = (IaB)b$$

$$\tau_{\rm max} = IAB$$

@ Thomson Higher Education

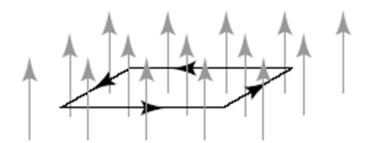

Torque on a Current Loop in a Uniform Magnetic Field

If the field makes an angle with a line perpendicular to the plane of the loop:

$$\tau = F_2 \frac{a}{2} \sin \theta + F_4 \frac{a}{2} \sin \theta$$

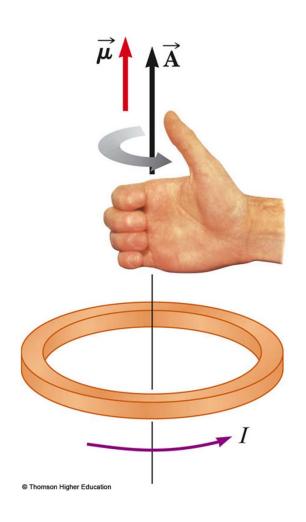
$$\tau = IaB \frac{b}{2} \sin \theta + IaB \frac{b}{2} \sin \theta = IabB \sin \theta$$

$$\tau = IAB \sin \theta$$



$$\vec{\tau} = I\vec{A} \times \vec{B}$$

Concept Question


A rectangular loop is placed in a uniform magnetic field with the plane of the loop perpendicular to the direction of the field.

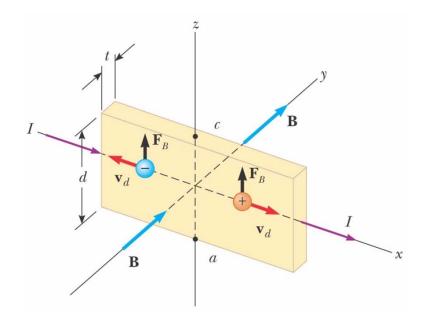
If a current is made to flow through the loop in the sense shown by the arrows, the field exerts on the loop:

- 1. a net force.
- 2. a net torque.
- 3. a net force and a net torque.
- 4. neither a net force nor a net torque.

Magnetic Dipole Moment

$$\vec{\mu} = I\vec{A}$$
 (Amperes.m²)

$$\vec{\tau} = \vec{\mu} \times \vec{B}$$

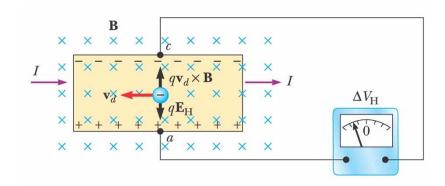

If the wire makes N loops around A,

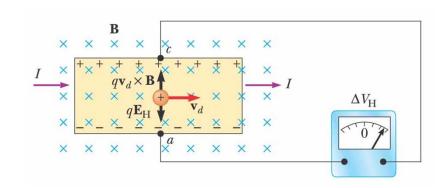
$$\vec{\tau} = N\vec{\mu}_{loop} \times \vec{\mathbf{B}} = \vec{\mu}_{coil} \times \vec{\mathbf{B}}$$

The potential energy of the loop is:

$$U = -\vec{\mathbf{\mu}} \cdot \vec{\mathbf{B}}$$

Hall Effect


$$qv_dB = qE_H$$


$$E_H = v_d B$$

$$\Delta V_H = v_d B d$$

$$v_d = \frac{I}{nqA}$$

$$\Delta V_{H} = \frac{IB}{nqt} = \frac{R_{H}IB}{t}$$

Summary

- The right hand rule
- Magnetic forces on charged particles
- Charged particle motion
- Magnetic forces on current carrying wires
- Torque on loops and magnetic dipole moments

For Next Class

- Reading Assignment
 - Chapter 30 Sources of the Magnetic Field
- WebAssign: Assignment 7